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Abstract 

We consider higher dimensional universes in which the universe is constructed from four- 
dimensional subuniverses. Independent parameters are introduced for the subuniverses. 
We then consider a small coupling between the subuniverses. Emphasis is placed on the 
eight-dimensional case. We find. that the trends from the computer are in line with the 
natural boundary conditions P}k ~ 0 being satisfied. We do not find any significant 
improvement resulting as a consequence of the higher dimensions over and beyond the 
four-dimensional work we have done in previous papers. 

1. Introduction 

There has never been any satisfactory explanation of why the universe can 
be described within the framework of four dimensions. This has led many 
authors to investigate the consequences of higher dimensional theories begin- 
ning with Kaluza (1921). The emphasis has been to a large degree on five- 
dimensional theories as this is the simplest extension beyond four dimensions. 
A problem in any higher dimensional theory is to build in the apparent four- 
dimensional character of  the universe, as appears empirically to be the case. 

If  one has a four-dimensional universe, one might wonder why there are 
not more such universes around. This could be accommodated in a higher 
dimensional theory of the type 4 , 4 . 4 ~ 4 ~  . . . .  That is, one could have many 
independent four-dimensional universes. If this were the case, then it would 
appear to any observer that the universe is four-dimensional. Now, suppose 
instead of the 'side by side't subuniverses being independent, there is a small 
coupling between them. Even though we would expect the essential four- 

A problem with five dimensions is that even though we would have four-dimensional 
subuniverses stacked next  to each other along the fifth direction, the four-dimensional 
subuniverse would differ from the neighboring subuniverses by an infinitesimal amount.  
Thus, the different four-dimensional subuniverses would not be basically independent as 
they are in the approach we have taken. 
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dimensional character to be preserved, some effects due to higher dimension 
would be introduced into the four-dimensional subuniverses. 

What might these effects be? There are some features that come to mind 
that could result from this coupling to higher dimensions. For example, it is 
possible that there be a creation of  matter in our four-dimensional subuniverse 
arising from the higher dimensional 'source'. Such continuous creation has 
been postulated in cosmological theories. Another possible effect from the 
interrelation with the higher dimensions could be the presence of  what appears 
to be a stochastic force affecting the motion of  a particle. Such forces have 
been suggested as giving rise to quantum phenomena (Nelson, 1966; de la Pena- 
Auerbach, 1967). 

Thus, it may be interesting to explore a universe with dimension 4n, with n 
an integer. It seems unreasonable that n should be infinite. At the moment we 
have no a priori argument to decide what n should be. We shall consider in 
this paper the case o f n  = 2. This would be the simplest extension beyond the 
conventional four-dimensional world. It is not so unreasonable that a doubling 
of  dimensions may yet turn out to be relevant. For example, it has never been 
understood why there appears to be so much more matter than antimatter in 
our own four-dimensional universe. Perhaps, it may be that what we need is a 
universe and an antiuniverse which have some coupling between them. 

In this paper, we shall discuss an eight-dimensional universe consisting of  
two four-dimensional subuniverses which are coupled together. So far as we 
know such a structure has not been studied previously. It is of  interest to see 
what definitive changes occur as a consequence of  the additional four dimen- 
sions. Comparision will be made with computer studies when the additional 
four dimensions are not present. 

2. Aesthetic Field Theory 

In a series of  papers (Muraskin, 1973a, 1973b; Muraskin & Ring, 1973)t 
we have been considering a field theory based on aesthetic mathematical ideas. 
We have demonstrated the existence of  a bounded particle. There is at the same 
time, no sign of  singularities appearing anywhere. The results are also consistent 
with a natural set o f  boundary conditions at infinity. 

In all instances but one, the way we obtained a bounded particle was to 
assume that the underlying data (17~,, g~#) is invariant under three-dimensional 
rotations at some origin point. The one exception to this was data 4 of  
Muraskin (1974). However, even in this case, it has not been proved that this 
data could not be obtained from a coordinate transformation on some other 
data which has the invariance property. 

The problem with our invariant type data was that after a long enough 
computer run all the field components appear monotonically to approach 
zero. If  this situation were to continue, we would not have a universe with 

t Further references are found there. 
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many particles in it. Now, it is possible that longer computer runs would even- 
tually show up additional structure, but it is also possible that this feature 
corresponds to a weakness of the theory as it is presently constructed. 

In view of the difficulty in obtaining anything but a °vacuum' far away from 
the particle, we may ask where is the notion of three-dimensional invariance of 
lP~3,, g ~  leading us. 

We may add that we have been unable to find a more general set of I~7, 
g ~  satisfying the invariance requirement, beyond that suggested in Muraskin 
(1973b). Thus, it would appear that the basic alternatives would involve the 
continued running of the computer using the data in Muraskin (1973b), look- 
ing for more structure, or else we may have to give up the idea of such an 
invariance principle within aesthetic field theory. 

However, there is still another alternative, We can go to higher dimensions. 
We know that the sixty-fourth F]k associated with i, i, k running from one to 
four approach zero far down, say, the xLaxis in Muraskin (1973b). But it is 
not clear that components like I'~s which couple the two subuniverses should 
also have this property. That is, even though such components are small at the 
origin, their change from point to point is small, and so when we go far enough 
from the origin these coupling components may even become larger than the 
components associated with the four-dimensional subuniverses (having i, ], k 
going from one to four). Thus, their contribution to the four-dimensional 
subuniverses may become the dominant contribution and thus these coupling 
components may then actually act like a 'source' function. This could then 
lead to a reversal of monotonic behavior outside the particle. 

We note that the effect of the coupling from higher dimensions on the 
four-dimensional subuniverses can be compared directly with the case of no 
coupling, using the computer, to see if the coupling is capable of leading to 
this desired effect. 

3. O(3 ) Data 

We need to specify ga~, F~/and e°~ i for the eight-dimensional case. We 
chose F~, with a,/3, 3' running from one to four to be identical with the F~k 
appearing in Muraskin (1973b) having R/jm :~ 0. This data led to a maximum 
in g44 ~ goo at the origin and satisfied the integrability equations. The under- 
lying data (see equations (10), (11), (12), (13) of Muraskin (1973b)) is invari- 
ant under 0(3). The data for r ' ~  with, a,/3, 3' running from five to eight was 
chosen to be identical with data 3 of Muraskin (1974), This also has an under- 
lying 0(3) invariant structure and satisfied integrability. This data did not lead 
to a maximum or minimum in g44 at the origin. All other F ~  (such as P~s, 
etc.) were chosen to be zero. 

The data for g ~  with cq/3 running from one to four was taken to be the gi] 
data of Muraskin (1973b) used in conjunction with the F~ k data there. For 
a,/3 running from five to eight we took the gi] data number 3 from Muraskin 
(1974). The remaining g,~ were chosen to be zero. 
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The e ight-dimensional  eai were chosen to be 

e l l  = 1 e12 = 0 e13 = 0 e l 4  = 0 

e21 = 0 e22 = 1 e23 = 0 e24 = 0 

e31 = 0 e32 = 0 ea3 = 1 e34 = 0 

e41 = 0 e42 = 0 e43 = 0 e44 = 1 

eSl = - - ' 6 4  x 10 -a e52 = - - ' 7 4  x 10 .3 eS3 = - - ' 4 3  X 10 -3  eS4 = "32 x 10 -3 

e61 = -57 x 10 .3 e62 = "82 x 10 -3 e63 = "92 x 10 -3  e64 = "81 x 10 -3 

e71 = ---3 x 10 .3 e72 = - - ' 7 6 2 x  10 .3 e73 = - - ' 9 9  x 10 -3 e74 = "76 x 10 -3 

e81 = -54 x 10 .3 e~2 = "67 x 10 -3 eaa = - - -86 x 10 -3 e84 = "9 x I 0  - 3  

e l s = - 9 x l 0  -3 e 1 6 = . 7 x 1 0  -3 e l T = . 8 x  10 .3  e I s = _ . 7 x 1 0  -3 

e2s = -85 x 10 .3  e26 = - ' 4 7  x 10 .3  e27 = - . 7  x 10 .3  e28 = - - .95  x 10 .3  

e3s = - - ' 7 5  x 10 . 3  e36 = -8 x 10 .3  e37 = "9 x 10 .3  e38 = - . 8 5 6  x 10 .3  

e4s = "68 x 10 .3  e46 = "85 x 10 .3  e 4 = "74 x 10 .3  e48 = "954 x 10 .3  

eSs = 1 eS6 = 0 eS7 = 0 eS8 = 0 

e % = 0 e66 = 1 e67 = 0 e68 = 0 

e7s = 0 e76 = 0 e77 = 1 e78 = 0 

e8s = 0 e86 = 0 e 8 = 0 e88 = 1 

Thus,  if  there  were no coupl ing be tween  1, 2, 3, 4 and 5, 6, 7, 8 in eai, we 
would  have two independen t  four-dimensional  universes, and for  each we would  
get the same results as descr ibed in our  previous papers.  In the case o f  no 
coupl ing be tween  the subuniverses,  c o mp o n en t s  such as P~7, however ,  would  
not  go to zero at  x 1 -+ oo but  would  keep  the same value they  had a t x  1 = 0. 
Thus, we m a y  ant ic ipate  F}k goes to a nonzero  cons tant  at infinity.  Therefore ,  
it is no t  clear at  this poin t  tha t  we can cons t ruc t  an e ight-dimensional  t heo ry  
satisfying the natura l  bounda ry  condi t ions .  This is a p roblem we should look  
into  af ter  we in t roduce  coupling be tween  the subuniverses. 

We have set up the eight-dimensional  run in the same manner  as described 
in Muraskin & Ring (1972).  We used, ini t ial ly,  an IBM 360/40  compute r .  Here 
we were get t ing a hundred  poin ts  ca lcula ted every 75 minutes .  Then  we 
switched to  an IBM 370/135  where we obta ined  100 points  every 23 minutes.  
This con t ras ted  wi th  100 poin ts  every 7 minutes  we were gett ing in our four- 
d imensional  work  wi th  the IBM 360/40.  

The p rob lem we shall investigate is wha t  effects  are impl ied  by  the coupl ing 
be tween  the two  subuniverses as descr ibed by  the above e ~ .  

4. Computer Results 

We ran the c o m p u t e r  ou t  to  x = 33,000,  making  this, by  far, the  longest  
run to  date.  We chose a variable grid so tha t  the value of  the cor rec ted  F}g, at  
the neighbor ing po in t ,  minus  the  cor rec ted  I'~k using ha l f  the grid, at  this  same 
poin t ,  was kep t  less than 10 - l °  t h roughou t  the run (Muraskin & Ring,  1972). 

The I'~k with  i, j, k running f rom one to  four  behaved as descr ibed in 
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Muraskin (1973b). By the time we were at x = 20, all sixty-four were growing 
smaller in magnitude. They continued growing smaller in a monotonic  fashion, 
so far as we could tell from the grid size we used, for the rest of  the run. Thus, 
no new turnabout  points showed up for these components.  This was also the 
case for the four-dimensional run which we ran concurrently for the sake of  
comparison. 

Next,  we studied components  of  the type P~s with one index running 
between five and eight and the other indices running from one to four. There 
was a small number of  turnabout  points for some of  these components  (this 
result involving turnabout  points was true for the other types of  components  
as well). I'~s started out at -106 x 10 -2. A t x  = 33,000 it was - . 9 5  x 10 -9. By 
the time we reached the end of  the run just  about all these components  were 
decreasing in magnitude. Even though a few of  these components  were 
increasing their magnitude at the end of the run, we found, nevertheless, that 
all components  of  this type were many orders of magnitudes smaller than their 
starting values. 

Components of  the type P~s (with two indices running from five to eight 
remained essentially constant as expected from examination of  the field 
equations, during the early part  of  the run. For  example, F~s was - . 6 1  x 10 .2 
at the origin. At  x = 169"2 it was - . 6 0  x t 0 -2. However, at x = 33,000 it had 
fallen off  to "93 x i0  -s .  At  the end of  the run the large majori ty o f  com- 
ponents of  the type Psts were decreasing in magnitude. 

Components o f  the type p88, for which all indices were in the range five to 
eight, tended to remain constant  in the first part  of  the run as expected. P8 s 
started out  at - t  .07. At x = 19" 19 it was -1 .06 .  At  x = 2020 we were in the 
vicinity of  a turnabout point  with a value of  .33. Its final value was +.046 at 
x = 33,000. Again most of  the components  of this type were decreasing in 
magnitude at the end of the run. 

In Table 1 we gave the results for P]I ,  P~l, r l s ,  r~s ,  as a function ofx .  
Our final value o f x  was 33,000. Note we could not  run the computer  with 
much reliability much farther than this since, at x = 33,000 we started picking 
up components  with magnitudes close to 10 -1° . 10 -1° is the maximum 
possible accuracy we can expect  with the grid sizes we have been using. 

In the beginning of  the run, there were 162 components  of Pjk that were 
increasing in magnitude. At  the end of  the run, t  there were only 10.$ The 
trend towards less components  getting larger in magnitude is not monotonic  
as a result of the existence o f  turnabout  points for the different components.  
We note that  often in our previous work (Muraskin, 1971) we were accustomed 
to field components  getting bigger in magnitude. Thus, our decrease in the 
number of  increasing components  from 162 to 10 is all the more striking. Note 
also that the magnitude of  all but  three components  at x = 33,000 were smaller 
than the corresponding components  at the origin.§ 

ef These numbers were obtained by comparing the components at the beginning and 
end of a 100 point run at both the origin and at x = 30,000. 

:~ We ran the computer to x = 165,000 even though some components were less than 
10 -1°. At this point none of the components were increasing in magnitude. 

§ At x = 54,000 all components were smaller than their original value. 



98  M. MURASKIN AND B. RING 

Even though it is not  clear that  the present trends need necessarily continue 
with still more accurate and longer runs, the impression that  we get is that  
F~k -~ 0 for large x is not  an unreasonable extrapolat ion from our present 
work. 

If there were no coupling between the subuniverses, we would expect  
Pjk ~ A}k at infinity with A).k constant.  However, even a small coupling, we 
see, suggests that A)-k may well be zero. This would constitute a set of  natural 
boundary conditions. 

Next, we compared our eight dimension results for F]k with i, j, k running 
from one to four with the four-dimensional run. At  x = 0 there was a slight 
difference between these two sets of  values due to the effect of  the small 
coupling coefficients eC~ i. The difference at the origin between the two sets was 
in the range 10 -4 to 10 -6. However, at the end of  the run, the difference 
between the two sets was no larger than 10 -9. Thus, the four-dimensional and 
eight-dimensional values tended to get closer together although, in general, not 
in a monotonic  fashion. The difference between the two sets as we approached 
the end of the run tended to grow even closer. 

In summary, we have found that  the four.dimensional and eight-dimensional 
values for the sixty-four Pjk differed at the end of  the run by an extra- 
ordinarily small amount.  

We have also repeated the calculation after increasing the coupling e'~i by a 
factor of  100. Also, we tried a run employing data of  the type used in Muraskin 
(1973a). In both cases we obtained results similar to that  which we have 
described previously in this paper. 

TABLE 1. Representative components as a function of x 

x rh rh rls 

0 1-06 2"06 "11 x 10 .2 - - 6 1 x  10 -~ -1"07 
• 646 -25 -98 .27 x 10 .3 - ' 6 1 x  10 -2 - 1 - 0 7  
2-516 - ' 1 1  "22 - ' 9 2 x  10 .4  - ' 6 1 x  10 -2 - 1 - 0 7  
8-06 - . 0 8 8  "03 - ' 7 8  X 10  . 4  - ' 6 1 x  10 -2 - 1 - 0 7  
509"2 - . 1 9 x  10 .2 -95 x 10 -s  - ' 2 2 x  10 -s  - . 5 2 x  10 .2  - - 4 4  
1865 - . 5  x 10 -3 "7 x 10 .6 - ' 3 6  x 10 .6 - ' 2 9  x 10 .2  .31 
3600 - - 2 8  x 10 .3 -19 x 10 .6 - ' 9 7 x  10 -7 - ' 4 6 x  10 -3 -30 
1 1 , 4 0 0  - - 8 8 x 1 0  - 4  "19x10  -7 - ' 8 5 x 1 0  -8 - - . 1 5 x l 0  - 4  .13 
33,000 - - ' 30  x 10 . 4  "22 x 10 .8 - ' 9 5  X 10 . 9  "93 x 10 - s  "046 

5. Conclusions 
We have introduced higher dimensions in a way different from other authors. 

Each four-dimensional subuniverse is assigned parameters independently of  the 
other four-dimensional subuniverses. We have emphasized the eight-dimensional 
case in this paper. Our computer  runs were restricted to data for which the 
subuniverses had an underlying 0(3) invariant structure. The present work has 
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not been successful in confirming our hopes that the higher dimensions would 
play a useful role in improving the results we had obtained in our four- 
dimensional studies. We loud no significant difference between the values of 
P~k (L ], k running from one to four) in the eight-dimensional run as compared 
with the four-dimensional run. 

In a more positive vein, it appears that it may be possible to construct 
higher dimensional theories in which the subuniverses are coupled, such that 
the natural boundary conditions are satisfied. 

In the next section, we will consider data not related to data invariant 
under 0(3). 

6. Data in which all Invariants Vanish 

In Muraskin (1972) we found a solution to the integrability equations 
having the structure 

r ~  = a ~  v (6.1) 

With the use of the field equations we found that (6.1) led to a singular 
structure. 

We can enlarge the data (6.1) as follows (exo~v is the antisymmetric symbol 
which takes on the values - 1 ,  O, 1) 

P~v = ~5~q~,,, +g~v~ a + (5,~0t3 + ~ / ( - d e t  go,~)gaPB x exp,~v (6.2) 

We find that when 

gat~ = diag(-1,  - 1 ,  - 1 ,  +1) (6.3) 

and 

0 e =Aq~ a 

Be = BOa 

(6.4) 

that the R}kt =% 0 integrability equations are satisfied provided 

~ 0  ~ = 0 ( 6 . s )  

Since P~v is constructed from a single independent null vector and from g~# 
in (6.3), it follows that all invariants constructed from P~v and gat~ are zero. 
This is a necessary condition in order that P~k --" 0 at infinity in a system 
where g -= det gi] ~ 0 at all points. 
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Equation (6.4) can be written as 

0o Bo 
ol =Cl 70 B~ =Ci c-7 

Bo 02 = C2 0-9-o B2 = C2 - -  
Co Co 

(6.6) 

0o Bo 
0 3 = c3 70 B~ = Ca Co 

There are four vectors in the decomposition (6.2), but in order to satisfy inte- 
grability they must all be parallel at least at the origin. From (6.2) we can solve 
for 0~, Ca, Ba. We get 

sr~a - 2raa~ 
0~ = 

18 

C,~ = 4tax" - p~" (6.7) 
18 

Ba = ~g~v P~x e~t~Xx 
x / ( -  det ga~) 

An ea/transformation will preserve the structure (6.2) and the resulting 
data will still obey the integrability equations. The eC~ i transformation leads to 

r~k =e  / e~, eukry:, 

gi] = eai e ~ g ~  

~i = eai~a 

0 i = e a i ~  

Bi = eaiBa 

(6.8) 

x / ( -det  g ~ )  e~.r~ acts like a fourth-tank tensor under the e~ transformation. 
Thus, after an e~i transformation we have 

r~:g = 5}~bk +gjk ~i + 5~0i + ~ / (_g)g imBt  ermj k (6.9) 

From (6.7) and P]ik; 1 = 0, gii;k = 0 we get for the change of Oi, Bi, Ci 

d¢~ = rik~j dx k 

dOi = P[kOj dx g 

as~ = r/~ ~ ~x ~ 

(6.10) 
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We used 3X/( -g) /3x  l = X/'(-g) Ft~ which follows from gij;k = 0. In I']/k;1 = 0, 
gii;k = 0 theory, all vector functions of P]~, gq, 3, change according to 

dAi = C[k Ai dx k (6.11) 

We see that Oi, Oi, Bi ascribe to this law as expected. We next find that F}k has 
the structure (6.9) at all points if it has it at one point. To prove this we note 

{lP~i k -- (5}~b k +gllc~ i + ~Oj  + x/(-g)gJmBt etmjk)};t = 0 (6.12) 

This follows since the individual terms obey an equation of the type 

Tqmn:..;t = 0 (6.13) 

Expanding the semi-colon derivative and using the fact that (6.9) holds at the 
origin we get 

3-~7{P~k - (6}0k + gik~ i + 6ikoj + x / ( -g )g  imBr etmjk)} = 0 (6.14) 

In a similar fashion we see that all derivatives of  the curly brackets vanish and 
thus the curly bracket is constant. Since it is zero, at the origin, it is then zero 
everywhere. Thus, P~k has the structure (6.9) at all points. 

We can also show that A and B in (6.4) are constants. From (6.8) we have 
0 i = A@ etc. Thus, dO i = A dOi + dA~i. But, from (6.10) and (6.14) we see 
dA=O. 

From (6.7) we get 

0o _ 5 P ~ t  - 2P~o 
q~o 4Ptt ° _ p t t  (6.15) 

From (6.6) and (6.4) we have A = 0o/4~ o. The quantity on the right side was 
calculated at various points down the x-axis by the computer. We found A to 
be constant to computer accuracy as expected from above. 

We can now prove that the data (6.2) leads to singular structure. From 
(6.10) together with (6.9) we get, on using (~iO i = 0 

O0t 
8x k = (1 +A)Oi4~k (6.16) 

This differential equation is not too different from the equation solved in 
Muraskin (1972) which had a singular structure. We can easily show that a 
singularity must develop from (6.16). Let us take i = 1, k = 1. Then we get 

d4h = (1 +A)~ba 2 dx t (6.17) 

If  1 + A is positive when we proceed down the x-axis, we will be continually 
adding positive contributions to the function at the origin. Thus a singularity 



102 M. MURASKIN AND B. RING 

must eventually develop. If  t + A is negative, the same situation will occur 
along the -x-axis.  

Thus, in going from the data (6.1) to the more involved data (6.2), we still 
have not got around the problem of singularities. 

On the other hand, in our previous work we had a four vector decomposition 
for which there was no sign of  singularities developing anywhere in our com- 
puter work (Muraskin & Ring, 1972). On scrutiny, however, there are differ- 
ences between this vector decomposition and (6.9). The vector in our previous 
work was not null. Also, there are minus sign differences. In Muraskin (1.972) 
we pointed out that if  we go to eight dimensions it is no longer a foregone 
conclusion that singularities will still develop. ~4= a ~i¢9 i will no longer be zero 
if there is a coupling between the subuniverses. In eight dimensions 1 ~  does 
not have the structure (6.2) since, for example, if ~b a ~ 0 then P51 would be 
non-zero if we had a vector decomposition. But we now have Ps51 = 0. The 
question is whether the coupling between the four-dimensional subuniverses 
can lead to damping effect. In the next section we shall discuss our computer 
results for this problem. 

7. Computer Results 

We have chosen ~ Ft~v,g~ ~, e i as follows. 
P ~  : a, 13, 3' running from one to four: 

q~l = "2 ~2 =" 3 ~3 = "6 

A 

ga~ = diag. ( - 1 ,  - 1 ,  - 1 ,  +1). 

P~,:  a,/3, 7 running from five to eight: 

q51 = "2 qS= = "3 q5 3 = "6 

B = I  A = 0  

~4 = Oo = "7 

~b 4 = '7 

(7.1) 

(7.2) 

g~t~ = diag. (+1, +1, +1, - 1 )  
All other P~v , ga~ were chosen to be zero. We then required that goo be a 

maximum or minimum at the origin by calculating e°l, e°z, e°3 in the manner 
described in Muraskin (1971). We chose eai to be 

ell = "9 el2 = - ' 1 3  eaa = - . 1 8 7  elo = - ' 3 4  

e21 = "21 e22 = .5 e2a = - ' 2 4  e2o = .082 

eal = - - 1 7  e32 = - - 2 6  ea3 = -65 e3o = - - 1 6 3  

e°o = - ' 7 1  

(7.3) 

The data above describe two independent four-dimensional subuniverses. 
We next introduced coupling between the two subuniverses by means of  eight- 
dimensional ee~ i. 
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ea~ = 1 e~2 = 0 e13 = 0 e14 = 0 

e21 = 0 e22 = 1 e23 = 0 e24 = 0 

e31 = 0 e32 = 0 e33 = 1 e34 = 0 

e41 = 0 e42 = 0 e43 = 0 e44 = 1 

(7.4) 

eSs = "99 

e6s = 1-2 

eVs = "24 

eSs = - 1 - 8  

eS6 = -97 eS7 = .25 

e66 = - .34 e67 = - .27 

e76 = "34 e77 = .76 

eS s ="  16 e87 = - ' 4 3  

eSs = .47 

e68 = "98 

e78 = -- "96 

= - 8 6  

(7.5) 

eis = "9 x 10 .3  

e25 = "85 x 10 .3  

e35 = - - ' 75  x 10 .3  

e4s = "68 x 10 .3  

e16 = "7 x i 0  .3 e17 = -8 x 10 .3  

e26 = - . 4 7  x 10 .3  e27 = - ' 7  x t0  .3 

e36 = -8 x t0  -3 e37 = "91 x 10 .3  

e46 = "85 X 10 .3  e 4 = "74 x t0  .3  

e18 = - - 7  x 10 .3 

e28 = - - 9 5  x 1 0  . 3  

e38 = - - 8 5 6  x 10 .3 

ea8 = - ' 9 5 4  x 10 .3 

(7.6) 

eSa = - ' 6 4  x 10  - 3  

e61 = "57 x t0  .3 

e71 = - - ' 3  x 10 .3 

e81 = '54 x 10  . 3  

e S 2 = - ' 7 4 x 1 0  .3  e S 3 = - ' 4 3 x 1 0  .3 

e62 = "82 x 10 .3 e63 = "92 x 10 -3 

e72 = - ' 7 6 2  x 10_ 3 e73 = - ' 9 9  x 10 .3 

e8~ = "67 x 10 .3 e83 = - ' 8 6  x t0  -3 

eS4 = "32 x 10 .3 

e64 = "81 x 10 .3 

e74 = '76 x 10 .3 

e84 = "9 x 10 .3  

(7.7) 

We ran this alongside the four-dimensional  data given by (7.1) and (7.3). In our  
previous discussion based on 0(3)  invariant  data we found essentially no differ- 
ence be tween the four-dimensional  and eight-dimensional  run so far as r'~i k, 
i, j, k running from one to four. However, this was no t  the case here. The differ- 
ence be tween  the results for the four- and eight-dimensional run  showed a 
definite increase in magni tude  as we went  down the x-axis, and the percentage 
increase was comparable to the percentage increase of  a representative 
componen t .  

The problem we encounte r  at this point  is that  the four-dimensional  run  we 
know will lead to singularities. When we considered the four-dimensional  case 
on  the compute r  we found m a n y  componen t s  were monoton ica l ly  increasing 
suggesting a singularity was developing. There were a few componen t s  that  had 
a t u r n a b o u t  po in t  close to the origin. However, for the componen ts  that  we 
graphed, we did no t  find any  componen t  having more  than  one t u rnabou t  
point  by  the t ime we reached x = .567. The eight-dimensional  run,  a l though 
slightly different  f rom the four-dimensional  run,  was still only  different  from 
the four-dimensional  case for P}k i, j, k = 1-4  in the second or third decimal 
place at x = -567. Thus,  it became clear to us that if any damping was to occur 
i t  would  involve an unfeasibly long run  before we might  hope to see it. Hence 
we decided to increase the coupling in (7.6) and (7.7) to make the four-dimen- 
sional and eight-dimensional  runs differ b y  a substant ial  a m o u n t  at the origin. 
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We decided to make the coupling terms so large that the coupling P]k 
became even larger in many instances than FIg i, ], k running for one to four. 
We then investigated whether a bound appeared. We chose to replace (7.6) 
and (7.7) with 

el5 = .19 e16 = - . 4  e17 = -216 e18 = - . 3 1 5  
e25 = .12 e26 = - . 2 4  e27 = -13 e28 = "36 

(7.8) 
e35 = - - 1 9  e36 = "28 e37 = "21 e38 = -- '16 
e4s = -- '11 e46 = -32 e 4 = "222 e48 = .123 

els = "19 e l6  = - . 3 4  e l7  = .08  e l8  = .38  

e2s = ' 321  e26 = "425 e27 = - - '254 e28 = - ' 1 5 9  (7.9) 
e35 = .14 e36 = .251 e37 = - ' 3  e38 = "2 

e45 = ' 0 8 5  e46 = -- '16 e47 = - . 1 3 5  e48 = - ' 3 4 2  
Unfortunately we did not find significant differences, so far as we could tell, 
between this run and the previous run which employed (7.7) and (7.8). There 
were somewhat more turnabout points for i, j, k running from one to four. 
But again, there was one or no turnabout point per component (we did find a 
component that had two turnabout points). We ran to x = 1-077 and observed 
a trend toward runaway components. For example, we had 

r o; 
x = 0 - ' 8 2  "66 
x = ' 3  - 2 . 2 1  "031 
x = ' 6 0 6  -6 -51  4"48 
x = ' 975  -44"47  62-97 
x = 1"077 -112"12  180"64 

Taking differences of  the field P]k between the origin and x = "06 we found 
404 components increasing in magnitude. In the region about x = 1"077,465 
out of  a possible 512 were increasing in magnitude. Note, this is the opposite 
kind of  behavior that we obtained in the first part of  this paper. This suggesm 
the possibility that if we continue running we may well end up with all 512 
components increasing in magnitude. It is never clear whether trends o f  this 
sort will eventually reverse themselves. However, we have not seen, thus far, 
any indication that a damping mechanism is at work. 

8. Conclusion 
Our approach to higher dimensions has, so far as we know, not been inves- 

tigated previously. But from a practical point of  view we have found no 
improvement in the results of  our previous papers. 

However, it may still be the case that our approach could have some 
validity. We have seen that the kind of  results we obtained in this paper has 
been critically dependent on the form of  the initial data. Four our 0(3) 
invariant data we found no significant difference for the values of  Pjk (i, ], k = 
1-4) in the eight-dimensional and four-dimensional cases after long runs down 
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an axis. On the contrary,  our data  in Sect ion 7 did no t  approach the four- 
dimensional  results. Thus, it may  be that  there exists a set o f  as ye t  u n k n o w n  
data for which the higher  dimensions may  lead to some of  the desirable effects  
discussed in Sect ion  1. 
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